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Independent Component Analysis and (Simultaneous)
Third-Order Tensor Diagonalization
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Abstract—Comon’s well-known scheme for independent com- tistical independence of the source components to estimate the
ponent analysis (ICA) is based on the maximal diagonalization, in mixing matrix and/or the source signals from realization¥ of

a least-squares sense, of a higher-order cumulant tensor. In a pre- o lqorithm bel he cl f hitenina-based
vious papr, we proved that for fourth-order cumulants, the compu- ur algorithm belongs to the class of prewhitening-base

tation of an elementary Jacobi rotation is equivalent to the compu- ICA algorithms. An eigenvalue decomposition (EVD) of the
tation of the best rank-1 approximation of a fourth-order tensor.  observed covariance matrix, or a singular value decomposition
In this paper, we show that for third-order tensors, the computa- (SVD) of the data matrix, allows estimation of the number of

tion of an elementary Jacobi-rotation is again equivalent to a best sources and decorrelation of them: the remainina rotational de-
rank-1 approximation; however, here, it is a matrix that has to be ! g

approximated. This favorable computational load makes it attrac-  gree of freedom is fixed by resorting to the higher order statistics
tive to do “something third-order-like” for fourth-order cumulant ~ (HOS) of the observations. FormallyM = E-D - Q, with E
t_ensors“ as well. We show that "5|multaneous optimal diagonaliza- andQ orthogonal (unitary) and diagonal, is a singular value
tion pf third-order tens_or“sl_lces of the fou_rth-order cumulan_t is decomposition (SVD) of the mixing matrix estimate, tf&and

a suitable strategy. This “simultaneous third-order tensor diago- ) . LS . .
nalization” approach (STOTD) is similar in spirit to the efficient D are estimated in the prewhlt_enlng stage, &hs _estlmated
JADE-algorithm. in a higher order stag&) is estimated on the basis of the hy-

Index Terms—Eigenvalue decomposition, higher order statistics, POthesized standardized data model
independent component analysis, multilinear algebra, principal

component analysis. Z=QX+N' 2
inwhich Z = D'E#Y and N’ = DE# N, with -T indicating
I. INTRODUCTION the Moore—Penrose pseudo inverse dhthe (complex conju-

ET us use the following notation for the basiclepen- 9ated) transpose.

dent component analyS(ECA) or blind source separation ~UP t0 some perturbation caused by non-Gaussian noise
(BSS) model: components, which are assumed to be small, the higher order

~ cumulant of the standardized random vect®C/ is a mul-
Y=MX+N=Y+N (1) tilinear transformation of the higher order cumulant of the
sourceLy, e.g., for the fourth-order cumulants of complex-
valued signals, assuming the complex conjugation pattern
C? =cun{Zz,2*, 2%, 7}, ie.,

in which the observation vectar € R!(C!), the noise vector
N € RI(CY), and the source vectoY € R’(C’) are zero-
mean stochastic vectors, with> .J; the mixing matrixM €
RI*/(CT*7) is assumed to be regulay; is the signal part of (7). . . . =cum{z;,2%, 2%, 2, } 3)
; ; : 4/ i jajagja L0 21 ¥ar “ia
the observations. The goal is to exploit the assumed mutual sta-
for all index entries, we have approximately
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of elementary Jacobi rotations, where each elementary rotation Proof: The theorem can be proved with straightforward
diagonalizes, as far as possible, fBex 2 x -- - x 2) subtensor calculus. The main subresults are given in Appendix A. &
associated with the marginal cumulants of the estimates of twaHence, the optimal rotation can be found by computing the
different source components. dominant eigenvector @ (i.e., the eigenvector corresponding

In Section Il, we reconsider the case of third-order cumularig the eigenvalue having the largest absolute value) and normal-
and show that it leads to similar expressions as the ones obtairzdeg it to unit length. The actual elements of the optimal inner
in the derivation of the JADE-algorithm [1]. In Section IlI, weGivens rotation can be obtained from the entrie&/dfy using
generalize the results to ICA based on fourth-order cumularie basic goniometric relation®s« = (1 + cos(2a)/2)/?
or on a combination of third- and fourth-order cumulants. Afteand sin o = sin(2«)/(2cos o). It is clear that the function
deriving the concept, we investigate some properties of the n@\le c2,; is periodic in the rotation angle, with periad'2, as
technigue and illustrate its performance by means of a numtitlee sign ofU is of no importance. The sign of the dominant
of numerical experiments. eigenvector can be fixed to restriEto the set of inner rotations

In [14], Moreau presents the idea of combining different cie € (—7/4, +7/4]).
mulant orders in a JADE- or STOTD-type scheme. It is basedStarting from a different kind of parametrization of the
on a preliminary version [8] of this paper; however, the curreivens rotation matrix, Comon also found that in the real
paper is the first elaborated version. Moreau [14] and Stoll athird-order case, the computation of the optimal rotation is a
Moreau [15] are restricted to real-valued data, whereas in tlgjgadratic problem [5]. (For the real fourth-order case, the com-
paper, we also consider the case of complex-valued data. putation amounts to the rooting of a polynomial of degree 4.)

However, this format shows less explicitly the analogy with the

[I. MAXIMAL DIAGONALIZATION OF A THIRD-ORDERTENSOR JADE-algorithm; see also Section Ill. The nontrivial derivation
. . . . of the complex case, to be discussed below, is entirely new.
In this section, we show that the computation of the Jacobl—ro-We also remark that generic real super-symmetric third-order

tation that maximally diagonalizes a givenX2 x 2) cumulant d . b letelv di |
tensor or a (X 2 x 2) tensor with the same symmetries (as jpensors, as opposed to matrices, cannot be completely diagonal-
ized. This can easily be verified by counting degrees of freedom;

Secon 1) et o0 bes ek PO o ) ol e upr Sz« ) e
y ) P an by definition be written a8 = C x; J7 x2 J¥ x3J7,in

Let us first consider theeal-valued caseThe (2x 2 x 2) which( is diagonal and a Givens rotation; hence, the manifold

tensor to be diagonalized is calléd It has the symmetries of of diagonalizable tensors is three dimensional (3-D), whereas

a cumulant of which the entries are given &ym{z;, 2, 2k}, e 1l vector space of real super-symmetricq(2 x 2) ten-
i.e., it is invariant under arbitrary permutations of its indices;

this property is called real super-symmetry. We defihe= sors is four dimensional (4-D).
IS property 1s X | Super-sy - N Now, let us consider theomplex-valued cas&Ve assume
C x1J x2J x3J inwhichJ is a Givens rotation matrix, imple-

menting an orthogonal basis transformation. We use the sttr#la—lt the complex (& 2x 2) tensorC does not change when
9 9 . ; ' f9°second and third index are interchanged (like it is the case
dard representation of Givens rotations

for a cumulant defined by the element-wise equatipn =
_ <cosa — Sina) ©) Cum(?;, 77, ;) for some random vectar).

) We defineC = C x1 J x» J* x5 J* in whichJ is a complex
Givens rotation matrix. Fo¥, we use the standard representa-
tion

bii=a (7 <

sina  cosa
We construct a real symmetric £22)-matrix B as follows:
b12 = 3@4/2 (8) J= (15)
b22:9a2/4+3a3/2+a1/4 (9)

COS v — sin « ¢
sin ce e COS v

We construct a real symmetric £33) matrix B as follows:
in which the auxiliary variables:, as, as, a4 are given by

2 a2 bit = a1 (16)

a1 = €11 + €29 (10) b12 = Im(v1) + Im(vz) (17)

a3 = &1y + Elyy (1) b1z = Re(v1) — Re(v2) (18)

a3 = C111C122 + Cr12C222 (12) by = vs — Re(vs) (19)

a4 = C122€222 — C111C112. (13) by = Im(vs) (20)

Using these notations, we state the following. bss = v4 + Re(vs) (22)

Theorem 1: Assume a super-symmetric tengoe R2<2x2 ) .
and consider the tens6rand the matrixB, which are defined inWhichRe(-) andIn(.) denote, respectively, the real and com-

above. The squared norm of the diagonal’ o¢ given by plex part of a complex number, and where the auxiliary variables
) are given by
267277 =U"-B-U (14) a1 = |é111|* + |C222]? (22)
=t az = |é112|® + |é212|? (23)

in whichU & (cos(2a) sin(2a))7T. az = |éa11|” + |E122] (24)
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as = C111C 1 (25) tion 1lI-B contains the algorithmic details. In Section IlI-C, we
a5 = G111y, (26) Q|scuss some properties of thg techmqug. qully, Section II_I—D
e = oo 27) illustrates the performance with some simulations. An outline
6T T of the algorithm is presented as Algorithm 1.
a7 = €222Co19 (28)
ag = C111Cy15 + C222€]19 (29) [ Aigorithm 1
a9 = €711C122 + C222C513 (30) ICA by means of STOTD
a10 = Cy11¢112 + ¢1226515 (31) GI\(lle;i\ Emple]z[Yglsz Of;; ?/iX e
n . Let = . . e an of the
vL=ar— a5/2 (32) mixing matrix estimate.
V2 = a4 — a6/2 (33) 1. Determinels, D from a prewhitening.
vz = a9/2 + ap (34) 2. Call¢Z the sample cumulant of the
e (al + ag)/4 +as+ Re(ag). (35) whitened observations. Associate witlf a

linear mapping fronR” (C7) to R > 7 <7
(C7*7>*7) [see (37)]. Determine a basis
{70} 1 <i< sy of the range{CZ } (Section I1I-A).
3. Initialize Q@ «— Tand7 — 70 (1 <1 < J).
Sweep the/ (J — 1) pairs(z, j), according

Using these notations, we state the following.

Theorem 2: Consider the complex-valued 2 x 2) tensor
C, the tensot’, and the matrixB, defined above. The square
norm of the diagonal of is given by

o

2
Z|C”Z|22UTBU

=1

(36)

in whichU &' (cos(2a) sin(2a)sin ¢ sin(2a) cos )7

to a fixed ordering. Iterate until convergence

(lx|] < € for all rotation pairs). For each pair:

a) Call¢() the (2% 2 x 2)-subtensor off (*)
(1 <1 < J), corresponding to sourcésand;.

Construct symmetric matriB € R?*? in
accordance with (7)—(9) and (43)—(46) (real case),
or symmetric matriB ¢ R**® in accordance with
(16)—(21) and (47)—(56) (complex case).

b) Determinel/ € R?(R®), with ||U|| = 1
andu; € RT, as the dominant eigenvector Bf.

Proof: The theorem can be proved with straightforwalrd
calculus. The main subresults are given in Appendix A. &
It can easily be verified that the formulas for the complex case
reduce to those for the real case if we assume¢hat 0 and
thatC is real super-symmetric.

Like in the real case, the optimal rotation can be found
computing the dominant eigenvector 8 and normalizing
it to unit length. The actual elements of the optimal inner
Givens rotation can be obtained from the entrieslbfby
using the basic relationsos c 1+ cos(2a)/2 and
sinae’® = (sin(2a)cos ¢ + isin(2a)sing)/(2cosa). The
sign of the dominant eigenvector can be fixed to restFi¢o
the set of inner rotationgy € (—n /4, +x/4]).

(K x K x K) tensors, with' > 2, can be maximally diago- A. Basic Idea
nalized by means of a Jacobi-type iteration. In our simulations, consider the fourth-order cumulant tengtff of the stan-
we have always observed convergence to the global optimiaydized random vectd in the higher order ICA stage, as in
when the tensor can be exactly diagonalized. However, like f@)‘ Let us associate witd? a linear transformation of” to

the Jacobi-techniques of e.g., [1], [6], a formal proof of conye vector space of third-order tens@&<? > in the following
vergence is lacking. When only approximate diagonalization,js,.
possible, we usually observe global convergence, but there are
cases in which the global optimum is not found. This will be V' =CZ(V) = vijn = Z (cf)ijklw
illustrated in Section 1lI-D, as well as for the technique of [1]. 7

The results of this section can be readily applied to estime}te

the factor@ in the ICA problem, which was sketched in thefr allindex values. This linear mapping has a very special struc-

by

c) Constructd; ; from U/, in accordance with
Theorem 1 and (6) (real case), or in accordance
with Theorem 2 and (15) (complex case).

d) UpdateZ ) — 7 54 J;; %2 I}, X3
(1 <1< ).

e) Accumulate — Q - J7.

I

(37)

introduction, provided at most one of the third-order cumulan yre if we neglect the additive noise term in the ICA-model. In

S A
of the SOUICES is Zero. erms of (4), the SVD of the mapping is given by

ll. ICA BY SIMULTANEOUS THIRD-ORDER TENSOR (38)

DIAGONALIZATION

In this section, we show that the results of the previous sdB-Which we have the following.
tion, involving third-order tensors, can still be useful for ICAin  « The singular values are given by sigrf )x;* (1 < j <
which the higher order stage is based on fourth-order cumulants. J), Wheremj( symbolizes the kurtosis of thgh source.
This leads to a new technique, which will be referred to as “ICA < The corresponding right singular vecto€g; are the
by simultaneous third-order tensor diagonalization” (STOTD).  columns ofQ, represented by}; (1 < j < J), and
In the first subsection, we explain the basics of this method. Sec- complex conjugated by convention.

J
(CE) pgrs = Z 7(Q))per (@)
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* The corresponding “left singular tensoig; (1 < j < .J) orareal symmetric (& 3)-matrix (complex case); however, the

are given by matrix itself is computed as a sum of contributions of the indi-
L x . . vidual tensors.
(Q;)pgr = sign (“j ) (Q)p(Q)¢(Q))7- (39) As far asreal-valued tensorsre concerned, this boils down

Therefore, the SVD of the linear mapping is strongly related {8 replacing the defi.nitions of; 10 a4 in (10)~(13) by the fol-
the standardized mixing matr®. Moreover, we remark that all 1oWing summations:

the third-order tensors in the range spac€ffcan be written _ NORS OB
as a linear combination of the left singular tensors such that they “ Z (Clll) + (6222) (43)
can be diagonalized b. 9 9

When noise is present and/or when the statistics afe only az = Z (c%) + (c%)?) (44)
available with limited accuracy, the derivation above is only l
approximately valid. We propose to estim&eas the unitary as = Z &0 &0 4 &0 . (45)
(orthogonal) matrix that simultaneously diagonalizes as far as .
possible (in least-squares sense) a set of third-order tensors that ay = Z 5512)25212)2 B 65?165?2. (46)

form a basis for the range 6f . Formally, if the set to be diago-
nalized is given b7V} 1<;< ), Qis estimated as the unitary
(orthogonal) matriXU that maximizes the function

i

In the complex casethe definitions ofa; to ayg in (22)—(31)
have to be modified to

2 2 2
-3 (S pnf) o) AR )
{ n i
2 2
whereZ’® equals the tensd& ) after multiplication withU: ap =) &+ &, (48)
l
7D = 7O 5, U x, U* x5 U, (41) 2 2
asz = Z cgll)l + 0512)2 (49)

By simultaneously diagonalizing a full basis of the range of l

CZ, the information contained in all the entries@f can be _ NONEORY 50
exploited. An orthogonal basis for the range of the linear map- = zl: i (Cm) (50)
ping can be obtained from the SVD in (38), together with a first 0 [0\
estimate ofQ. Therefore, for the set to be jointly diagonalized, as = Z Ci11 (Czn) (51)
one could take the set of left singular tenspg; } ;<< . On ! .
the other hand, the first terms in (38) have a larger contribu- ag = Z & (0%)2) (52)
tion toCZ than the last ones (we assume that the singular values f
are listed in decreasing order). To take into account the relative 0 — Z RO (5@) )* (53)
importance of the different terms, it makes sense to jointly di- t l 222\ 212
agonalize the sefts;* Q;}(1<;<) instead. This corresponds to ) N et
the optimization of the weighted function as=>_ &t (0511)2) + &, (Cglm) (54)
4
F0) =3 (55) NONE Y FORNF ORI O FORNY 55
= i ) Z (i . (42) a9 = Z Ci11) Ciza t Caa | Com1 (55)
4 n l
One could also “roughly” resort to an ordinary basis that is ob- alg = Z (cg?l)* 692 + é§l2)2 (é%)* . (56)
4

tained by simple transformation und&f of .7 linearly indepen-

dent vectors, e.g., transformation of the canonical unit vectorsRemark 1: Although this result might seem contraintuitive,
corresponds to choosing the “third-order tensor sli¢€s")"), it turns out now that simultaneous diagonalization of a set of
which are obtained by keeping the indeix (C£); 1 fixed. third-order tensors, exhibiting the symmetries specified above,
leads to a similar expression as the simultaneous diagonalization
of a set of Hermitean (symmetric) matrices; cf. [1].

Like for the optimal diagonalization of a single third-order In the same way, one can base the higher order step of the
tensor, the optimal simultaneous diagonalization of a set alyorithm on third-and fourth-order cumulants. Therefore, one
third-order tensors will be computed by Jacobi-iteration. lpan add (a weighted version) of the third-order cumulant to the
each step the set df (2 x 2 x 2)-tensors associated with the elset of third-order tensors that has to be diagonalized. One should
ementary rotation, will be diagonalized as far as possible. Thigen simply consider a matr ((7)—(9) or (16)—(21)) that con-
set will be represented b{/C@}(lSlSJ). By Jacobi-rotation sists of a weighted sum of contributions related to the third- and
these tensors are transformed into the{é?é‘t)}(lSlSJ). the fourth-order cumulant. In this way, it becomes possible to

The function that will be maximized is the sum of the squareskparate sources that are nonkurtic, provided their skewness is
norms of the diagonals of the tens@f¥’. Theorems 1 and 2 different from zero, and vice versa. This idea was proposed in
show that the optimal rotation can still be estimated via the doifi4], where it was called “extended STOTD” (eSTOTD); this
inant eigenvector of a real symmetricX2)-matrix (real case) paper was based on the preliminary paper [8].

B. Computation
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C. Properties of the third-order tensor slices of the standardized fourth-order
Sumulant tensor, is an invariant estimator of the mixing matrix.

In this subsection, we will study two interesting properties e ) .
Proof: The proof is given in Appendix A. ]

the STOTD technique. First, we will show that the technique can
be cast in the framework of contrast optimization. Second, we
will demonstrate that the STOTD estimator is invariant w.r.t. IeR ’
multiplication of the mixing matrix by a square regular matrix. We illustrate the performance of the STOTD technique by
1) Contrast Optimization:In several ICA techniques, themeans of three Monte Carlo experiments, in which we average
mixing matrix is estimated through the optimization of #&ver 500 simulations. In each of the figures, the solid lines are
so-calledcontrast function(cf. definition proposed in [4] and obtained by STOTD. The dashed lines, which are drawn for
[6]; this definition was generalized in [13]). comparison, are obtained by means of the JADE algorithm [1].
Definition 1 (Contrast): A contrast over a sét of matrices ~ In afirst experiment, we consider a setup of two observation

is a mapping¥ from the set of probability densitigg x | X € channels, listening to two sources, in which the signals are real
C’ or R’} to R that satisfies the following requirements. valued. Three different types of zero-mean unit-variance source

distributions are used:

Simulations

1) ¥(px) does not change if the components®fare per-

muted or scaled a) binary distribution, withProb(x = 1) = Prob(z =
—-1) =1/2;
VU(px) = ¥(papx) (57) b) unh?orm o{istribution over the intervéil-/3, +v/3];
in which A is a diagonal matrix an® a permutation ~ ©) double-sided exponential distributign: () = (1/v/2)
matrix. exp(—v/2|z)).
2) If X has mutually independent components, thehhe three possible configurations (binary/uniform, binary/
U(pmx) < U(px) for every matrixM € M. double-sided exponential, and uniform/double-sided exponen-

3) If X has mutually independent components, théffl) are considered. Since the three distributions are even, the
U(pmx) = U(pyx) only if M = AP, whereA is a higher order stage of the algorithm is based on the fourth-order
diagonal matrix an® a permutation matrix. cumulant. In each simulation, a new mixing matrix is generated

The first condition reflects that contrast optimization shoulBY taking its elements from a zero-mean Gaussian distribution.

show the same indeterminacies as ICA itself. The basis of co-me columns of _th? mixing matrix are Subsle;quentlly scaled to
trast optimization is established by condition 2: uniquenessY8it 1ength. In this first experiment, the additive noise tekm

obtained by the third condition. Property 3 is referred to as t}%neglecte_d. i o )

discrimination propertyof the contrast function. We (flofnS|der 'Ehe following two indices of performance. First,
The notation¥ (px ) is often abbreviated a&(X ). ISR;; = E{|(M'M);;|*} quantifies the average contamina-
We now show the folowing theorem. tion by thejth source of théth source estimate and can be con-

Theorem 3 (Contrast)LetC be the fourth-order cumulant Sidered to be an (approximate) ISR. Secondly, we consider the
of a white stochastic vectak with values inC” (R7). The root mean square error (RMSE)E||M — M]||2 in which both
function matrices are normalized in the same way. My we assume

unit-variance sources, and fiM, we assume the corresponding
(X)) = Z Z ‘ (Cf)mz (58) optimal columnordering and scaling. These performance param-
= = I eters are plotted as a function of the length of the datdsets

In Fig. 1, we plot the mean ISR for the three source configu-

is a contrast function over the manifold of unitary (orthogonaphtions. The dotted line is the theoretical low-noise upper-bound
matrices. It is discriminating for the set of random vectors oj; performance given by [2, eq. (30)]

which at most one component has zero kurtosis.

2

Proof: The proof is given in Appendix A. | lim  TE{ISRy; + ISR;;} > 1 (59)
In[15], a class of contrasts is proposed that encompasses con- T—oo,ony—0 - T2
trast (58). The paper by Stoll and Moreau [15] was based on {&yhich oy is the standard deviation of spatially and tempo-
preliminary paper [8]. rally white Gaussian noise.

2) Invariance: Invariance of an ICA estimator means that |n Fig. 2, we plot the RMSE. The dash-dotted and dotted lines
in the absence of noise, its estimates are transformed in §ige the two upper bounds of performance derived in [10]. The
same way as the mixing matrix when multiplied from the lef§jash-dotted lines image the performance that could ultimately
with a regular matrixA.. The interference-to-signal ratio (ISR)be obtained given the error introduced in the prewhitening step;
obtained by invariant ICA estimators does not depend on the dotted lines show the ultimate performance when only taking
mixing matrix; it can even be computed using the unmixe@ito account the estimation error on the singular values of the
dataset (still under the no-noise assumption). This propertynifixing matrix.
called uniform performance of invariant estimators [2]. The second experiment is inspired by the simulations

For details on the general theory of invariance, see [11, ch. Gbscribed in [1]. We consider two zero-mean complex-valued
For aspects of invariance related to ICA, see [3]. We now staieurce signals drawn from a uniform distribution over the
that the STOTD-technique is an invariant ICA estimator. circle with unit radius. Both signals impinge on a linegf2

Theorem 4 (Invariant Estimator)The two-stage ICA-proce- equispaced array of 10 unit-gain omnidirectional sensors in the
dure, based on prewhitening and simultaneous diagonalizatfanfield of the emitters. The theoretical values of the elements
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(ISR12 + ISR2;)/2 (dB)
(ISR12 + ISR21)/2 (dB)

= , \
10° 10

Fig. 1. Mean ISR in the first simulation of Section IlI-D, as a function
of the length of the dataséf. Configurations of the source distributions.
(a) Binary. (b) Uniform. (c) Double-sided exponential. Solid: The mixing
matrix is estimated by means of the STOTD technique. Dashed: The mixing
matrix is estimated by means of the JADE technique. Dotted: Upper bound of
performance.

0.18 T T

(ISR12 + ISR21)/2 (dB)

Bor o0z 005 o o005 06 007 006 009 01
P2

Fig. 3. Mean ISR in the second simulation of Section IlI-D. Solid: The
mixing matrix is estimated by means of the STOTD technique. Dashed: The
mixing matrix is estimated by means of the JADE technique. Dotted: Low-
noise upper-bound of performancip Effect of the SNR on the quality of
separationo; = 0. Bottom Effect of the difference in DOA¢; = 0) on the
uality of separation.

Fig. 2. RMSE in the first simulation of Section III-D, as a function of thed
length of the dataséf. Configurations of the source distributions. (a) Binary.

e rmyng, Ml Sagrival (DOA) for three different noise levels}, = —15 dB,
estimated by means of the JADE technique. Dash-dotted: The upper bound-d&f dB, and 5 dB. The dotted line is the theoretical upper bound
performance given by [10, eq. (20)]. Dotted: The upper bound of performang¢ performance of [2, eq. 30].
given by [10, eq. (21)). Fig. 4 is the analogous plot for the RMSE of the reconstruc-
tion of the mixing matrix.
of the mixing matrix are given byn,, = ¢*™%«, where¢, Thus far, the results obtained by STOTD turn out to be nearly
equals the electrical angle of sourgeThe noise is Gaussian,the same asthe results of the JADE algorithm. The computational
with powero?;. In each experiment, the data length= 100, load of JADE and STOTD are comparable as well. In the real
and the angleb; = 0. Since the source distributions are pointase, the computation of the optimal vedtdeads to the rooting
symmetric around the origin, the higher order stage of tluéa quadratic polynomial in both methods. In the complex case,
algorithm is based on the fourth-order cumulant. both methods lead to the rooting of a polynomial of degree 3. The
In Fig. 3, we plot the mean ISR. The top figure shows thenly difference consists of the fact that in the JADE algorithm,
effect of a varying signal-to-noise ratio (SNR) for three differerine usually restricts the number of matrix slices that are pro-
mixing configurationsp, = 0.02,0.05 and0.1 (note that in the cessed to’ by computing the/-dimensional dominant subspace
latter case, the steering vectors are mutually orthogonal). Toie Hermitean (symmetri¢y? x J2) matrix; the other eigenvec-
bottom figure shows the effect of the difference in direction-oters are considered to be noise contributions. Inthe STOTD tech-
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RMSE
Mean Index (dB)

02f)

Average nr. sweeps

o1,

N ‘I.““ 1
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005 006 007 008 009 01 " 25 -2 15 10 5 0 5 10
b2 o% (dB)

Fig. 4. RMSE between the true mixing matrix and its estimate in the secop Mean in nd number of m function of
simulation of Section IlI-D. Solid: The mixing matrix is estimated by means t%; > ean index (top) and number of sweeps (bottom) as a function o

the STOTD technique. Dashed: The mixing matrix is estimated by means of eirigtlzdmb;h?nteh;ndssé?lﬂ:“g?g-lf-g ?ggﬁzigbg .g:;ﬁé;h_?hrglﬁ?gnngﬁantqr;rzi is
JADE technique. Dash-dotted: The upper-bound of performance given by [ timated by means of the JADE technigie.= 0. “o”-marks: ds = 0.02.

eq. (20)]. Dotted: The upper-bound of performance given by [10, eq. (Rig]. “sc-marks: s = 0.05. “+"-marks: s = 0.1 ‘

Effect of the SNR on the quality of the reconstructien. = 0. Bottom Effect o o o o

of the difference in DOA ¢ = 0) on the quality of the reconstruction.

in whichS = MTM. This index is zero itV equalsM up to
nique, such areduction step is not required (although the “fuzzy"column scaling and permutation, and a small value indicates
reduction of (42) may still make sense). that the estimate is close.

The third experiment s similar to the second, exceptthattherein Figs. 5 and 6, we plot the index value and the required
are three sources instead of two. The electrical angle of the thifgmber of sweeps averaged over 500 Monte Carlo runs. We
source is asssumed to bg = ¢, /2. The iteration stops when pote that the accuracy obtained with the STOTD technique is
for all the Jacobi rotation matrices computed in the same swegBnerally a bit higher than with the JADE technique, especially
the off-diagonal entries are smaller thian-3 in absolute value. 5, problems that are a bit more challenging; however, the

The obtained accuracy is measured in terms of the index [12JJADE iterations stopped after a somewhat smaller number of

1 |52 sweeps. On the average, the convergence is fast. We remark
5 Z Z m -1 that generally more sweeps may be needed when the problem
! becomes more difficult. We checked whether the higher ac-
9 curacy of STOTD was due to the stop criterion, i.e., whether
X Z Z L7 1 (60) JADE would not yield the same accuracy if more iterations
J

i J

max |s;|? . ‘
J were allowed. This turned out not to be the case. When in each

%
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Fig. 7. Number of runsin the third simulation of Section Ill-D, where the index
obtained with STOTD was more than 50 times the index obtained with JADE
(bars left from the value of%,) or vice versa (bars right from the value®f; ).

this happens, we plot in Fig. 7 the number of runs in which the
index (60) obtained with the STOTD technique was more than
50 times the index obtained with the JADE technique, and vice
versa. In these runs, either STOTD or JADE was not globally
converging or at least the convergence speed became too slow.
In our experiment, this was significantly more often the case for
JADE than for STOTD.

We also mention that in [14] an experiment was conducted
in which STOTD and JADE were based on third- and fourth-
2 . . . . . N . order cumulants and where it was concluded that the STOTD
Gor o 0 oW o 0% om  0® 0 0 results were better for sources with a positive kurtosis, whereas

$2 the JADE results were better for sources with a negative
kurtosis.

Average nr. sweeps

Fig. 6. Mean index (top) and number of sweeps (bottom) as a functign of

in the third simulation of Section 1ll-D¢; = 0. Solid: The mixing matrix

is estimated by means of the STOTD technique. Dashed: The mixing matrix 1V. CONCLUSION

is estimated by means of the JADE technique&-tharks: 0%, = —15 dB.

“x"-marks:o2, = —5 dB. We have proved that the computation of an elementary Ja-

cobi rotation, in the optimal diagonalization of a third-order
cumulant, can be formulated as the best rank-1 approximation
run five extra JADE sweeps were carried out, the maximat a real symmetric (% 2)-matrix (real case) or (8 3)-matrix
improvement of index (60), which was considered over altomplex case). This is still true for the optimal diagonalization
runs, was smaller than 3%. of a set of third-order cumulants; the matrix is obtained as a
If we analyze the simulation results in detail, then we see theuim of contributions of the individual tensors in the set. Com-
there are runs in which STOTD was able to find a good solutioparison with formulas for simultaneous matrix diagonalization
whereas JADE was not, and vice versa. For instance, the misads to the result that simultaneous diagonalization of complex
imum number of iterations required by STOTD (47) was for geal) third-order tensors exhibiting the symmetry specified in
run wheregp, = 0.1 ando?, = 0 dB; the obtained index value Section Il is similar to the simultaneous diagonalization of Her-
was 0.45, whereas JADE obtained a value of 0.003 in seugiitean (symmetric) matrices.
sweeps. On the other hand, under the same conditions, there wage have shown that ICA can be realized by simultaneous
arun where JADE needed 32 iterations to obtain an index valgiagonalization of third-order tensors, spanning the range of the
of 0.42, whereas STOTD converged to a value of 0.002 in threndardized fourth-order cumulant. This algorithm is similar in
sweeps. spirit to the JADE algorithm. We have interpreted the algorithm
Apparently, in these two cases, one of the two methods did rioterms of contrast optimization and proved that it corresponds
converge to the global optimum. As an indication of how ofteto an invariant ICA estimator.
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APPENDIX A On the other hand, we remind that the cumulaniois given
PROOFS by
Theorem 1: X X w w
: . C; =C; x X X x4 Q.
Proof: The diagonal entries af have the form 4 Qe Qe QhxaQ
c111 = cos® aéi1g — 3cos? asin adyin f(X) can be bounded by the squared Frobenius-noréyofo
= +3cos asin® aé g — sin® aéazg, prove that(X) < f(X):
3 - -2 - - = =112
Co922 = SIN .060111 +23S}11 OéCOSC;Cll? f(X) :Z‘ ci( S Hci(H
= 43 s8in o cos” (xC192 + COS” (vCa9o. Jigl
The squared diagonal norm 6fcan then be written as — Hcﬂf = f(X)
G+ By = <% (12 + E22) in which we used that the fact that multiplication with a unitary
matrix does not alter the Frobenius norm of a tensor.

Now, we prove that the equality sign only holdgfis of the

3. . o .
+ =(C111€122 + C112€222) ) sin” (2« ° .
2 ( )> (22) form specified above. Let us firstassume that all the components

. N 3. of X are kurtic.f(X) = f(X),or f(X) = ||C{ || implies that
2 2 22
+ (G + &) <1 g Qa)) the third-order cumulant slices 6§, which are represented by
+ (61226222 — C111¢112) (3 sin(2a) cos(2ar)). (C4 )@, are strictly diagonal, e.g., the firsttensor slice is given by
In (14), this expression is given in a matrix format. [ |
Theorem 2: ( )mzzs B Z iR ) i G

Proof: The diagonal entries af have the form .
Now, assume that exactlly7 > 1 of these terms do not vanish

_ 3 o~ 2 ~ —i¢ | ~ it -
Cu1 = cos” acyyy — cos” asin a(2¢112€7"% + E211€"7) ‘ (sayqiis™ # 0,q126 # 0, ..., q ™" # 0). According to
+ cos asin® (€126 7> + 28912) — sin® a2’ a property of higher order tensors (cf. [9, th. 7.3.3]), claiming
Cozo = sin® aéy11 €™ + sin® o cos (28119 + Ea1162%9) that(C3*) is strictly diagonal means that the matf.r =
+ sin vcos? aGrane ™% + 262126"%) + cos® alaze. [@1Q2 ... QFr] with Q; representing thgth column ofQ, is in
the form
The squared diagonal norm Gfcan then be written as o
lein1|? 4 |e222|? Qi.r =AP
= |é1] + |éaze in which A € C/*¥ containsF unit-norm elements on the di-
2(9 3. o . o agonal, and® € CF** is a permutation. However, this implies
+sin™(2a) | — 7 (1n]” + |6222]") that only one of the coefficientg, ;x** (1 < f < F) could
1 2412 have been different from zero. Hence, we conclude that diago-
(|26112 + a1 €™?? + 26012 + Cimae™ ) nality of (C3*)® involves thatF = 1. In other words, the first
1 e s row of Q only contains one nonzero entry; this entry has unit
T35 Re(Cu11(Crzze™™" + 26212) norm. Repeating the derivation for the other third-order cumu-
+ Ca22(Ea116%7 + 25112)*)] lant slices, and taking into account ti@tis unitary, shows that
— sin(2a) COS(QQ)Re(ém67145(&211627@5 +261)" ?agﬁr:?vlvns exactly one unit-modulus entry in each column and
S by 2 = :
— 300 @ P (E1o9¢ H1P 4 26515)). Finally, if, e.g.,z s is nonkurtic, then the reasoning above can
In (36), this expression is reorganized and presented in a mat¥fxrepeated for the random vector formed by the firstl com-
format. m ponents ofX. The fact that the original) has to be orthogonal
Theorem 3: then induces the required form of the remaining colugn =
Proof: DefineX = QX, in which X has mutually in-  Theorem 4:
dependent components, a@yis unitary (orthogonal). We will Proof: Call X the estimate of the source vectsir with

prove thatf(X) < f(X) and that the equality sign only holdsestimated covarianc€® and cumulant?4 The prewhitening

if Q = AP, in which A is a diagonal matrix of unit-norm ele- takes the form obX =1, and the higher order step is based

ments, and? is a permutation. on the optimization ob , , |(C4 );i511%. Hence, the algorithm
Since the components of are mutually independent, itsis based on the output of the separator, which is a sufficient

fourth-order cumulant is diagonal, anflX) is the squared condition for invariance [3]. ]

Frobenius-norm of this cumulant (the squared Frobenius-norm

of a tensor is by definition the sum of the squares of all its REFERENCES
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